

Von der Vielfalt profitieren: Ökosystem(dienst)leistungen von Fließ- und Standgewässern


Prof. Dr. Markus Weitere
Department Fließgewässerökologie

Mit Beiträgen von Dr. Mario Brauns, Matthias Scholz & Dr. Christine Wolf

Mensch und Gewässer

Vielfältige Nutzung der Gewässer, Beispiele

Ökosystem(dienst)leistungen sind direkte und indirekte Beiträge der Natur zum menschlichen Wohlergehen

⇒ "Nutzenstiftungen" bzw. "Vorteile", die Menschen von Ökosystemen beziehen

Unterstützende ÖSL

Soil formation	Soil formation and fertilization by sedimentation in riparian zones
Nutrient retention and cycling	Nutrient storage in rivers and riparian zones, nutrient spiraling in rivers
Biodiversity and food web dynamics	High habitat diversity and species richness mediate resilience ("insurance")

Produktions-ÖSL

Food	Fisheries products (e.g. fish, crustaceans), wild ga and vegetables	
Domestic water use	Drinking water production and other domestic uses	
Industrial water use	Process water in industries and cooling water	
Agricultural water use	Irrigation water for production of agricultural goods in arid regions	
Non-consumptive water use	Hydropower generation and transportation/ navigation	
Fiber, fodder, peat	Reed production, animal fodder, peat as energy source	

Regulierende ÖSL

Self-purification	Maintenance of water quality, detoxification, natural filtration, nutrient retention. Great importance of benthic communities (biofilms, particle feeders)
Flood buffering	Retention capacities of riparian zones, wetlands, and lakes, buffering of flash floods
Land-water- interactions	Groundwater recharge from inland waters, transition zones between terrestrial and aquatic ecosystems
Climate regulation	Buffering of air temperature and humidity variations by evapotranspiration

Recreation and tourism	Recreational areas are required near urban areas; tourism is of high importance at the regional scale
Aesthetic/spiritual values	Sacred lakes, ethical heritages, aesthetic landscape elements
Educational values	Education in Ecology, schools, universities and stakeholders (farmers, water managers)

Unterstützende ÖSL

Bodenbildung
Soil formation and fertilization by sedimentation in riparian zones

Nährstoffkreislauf
ent storage in rivers and riparian zones, nutrient ing in rivers

Erhalt genetischer & tat diversity and species richness mediate ("insurance")

funktioneller Vielfalt

Produktions-ÖSL

Food	Fisheries products (e.g. fish, crustaceans), wild gam and vegetables	
Domestic water use	Drinking water production and other domestic uses	
Industrial water use	Process water in industries and cooling water	
Agricultural water use	Irrigation water for production of agricultural goods in arid regions	
Non-consumptive water use	Hydropower generation and transportation/ navigation	
Fiber, fodder, peat	Reed production, animal fodder, peat as energy source	

Regulierende ÖSL

Self-purification	Maintenance of water quality, detoxification, natural filtration, nutrient retention. Great importance of benthic communities (biofilms, particle feeders)
Flood buffering	Retention capacities of riparian zones, wetlands, and lakes, buffering of flash floods
Land-water- interactions	Groundwater recharge from inland waters, transition zones between terrestrial and aquatic ecosystems
Climate regulation	Buffering of air temperature and humidity variations by evapotranspiration

Recreation and tourism	Recreational areas are required near urban areas; tourism is of high importance at the regional scale
Aesthetic/spiritual values	Sacred lakes, ethical heritages, aesthetic landscape elements
Educational values	Education in Ecology, schools, universities and stakeholders (farmers, water managers)

Unterstützende ÖSL

Bodenbildung		rmation and fertilization by sedimentation in a zones
Nährstoffkreisl	2III	nt storage in rivers and riparian zones, nutrient g in rivers
Erhalt genetisch funktioneller Vie		tat diversity and species richness mediate ("insurance")

Produktion	
Nahrungsprodu	iktion oducts (e.g. fish, crustaceans), wild game
Domestic water use	Drir Trinkwasser 464 km³ p.a. ses
Wasserverbrau	ch Industrie 768 km³ p.a.
Agricultural water use	Irrig Landwirtschaft 2.769 km³ p.a.
Wasserkraft, T	ransport, etc.
Rohstoffe (Sch	ilf Torf etc) al fodder, peat as energy

Regulierende ÖSL

Self-purification	Maintenance of water quality, detoxification, natural filtration, nutrient retention. Great importance of benthic communities (biofilms, particle feeders)
Flood buffering	Retention capacities of riparian zones, wetlands, and lakes, buffering of flash floods
Land-water- interactions	Groundwater recharge from inland waters, transition zones between terrestrial and aquatic ecosystems
Climate regulation	Buffering of air temperature and humidity variations by evapotranspiration

Recreation and tourism	Recreational areas are required near urban areas; tourism is of high importance at the regional scale
Aesthetic/spiritual values	Sacred lakes, ethical heritages, aesthetic landscape elements
Educational values	Education in Ecology, schools, universities and stakeholders (farmers, water managers)

Unterstützende ÖSL

Bodenbildung	Soil formation and fertilization by sedimentation in riparian zones
Nährstoffkreisl	auf nt storage in rivers and riparian zones, nutrien ng in rivers
Erhalt genetisc	at diversity and species richness mediate ("insurance")
funktioneller Vi	elfalt

Produktions-ÖSL

Nahrungsprodu	ktion ducts (e.g. fish, crustaceans), wi	ld game
Domestic water use	Drir Trinkwasser 464 km³ p.a.	ses
Wasserverbrau	ch Industrie 768 km³ p.a.	
Agricultural water use	Irrig in al Landwirtschaft 2.769 km ³	p.a.
Wasserkraft, Ti	ansport, etc.	
Rohstoffe (Sch	If, Torf, etc.) al fodder, peat as ener	gy

Regulierende ÖSL

Selbstreinig		of water quality, detoxification, natural rient retention. Great importance of ommunities (biofilms, particle feeders)
Hochwasser	schutz	acities of riparian zones, wetlands, and ag of flash floods
Land-water- interactions		ater recharge from inland waters, transition ween terrestrial and aquatic ecosystems
Klimaregulat	ion	air temperature and humidity variations spiration

Recreation and tourism	Recreational areas are required near urban areas; tourism is of high importance at the regional scale
Aesthetic/spiritual values	Sacred lakes, ethical heritages, aesthetic landscape elements
Educational values	Education in Ecology, schools, universities and stakeholders (farmers, water managers)

Unterstützende ÖSL

Bodenbildung	Soil forr	mation and fertilization by sedimentation in zones
Nährstoffkreisl	THE	storage in rivers and riparian zones, nutrient g in rivers
Erhalt genetisch		tat diversity and species richness mediate ("insurance")
funktioneller Vi	elfalt	

Produktions-ÖSL

Nahrungsprodu	ktion oducts (e.g. fish, crustaceans), wild gan
Domestic water use	Drir Trinkwasser 464 km³ p.a. ses
Wasserverbrau	ch Industrie 768 km³ p.a.
Agricultural water use	Irrig in al Landwirtschaft 2.769 km³ p.a.
Wasserkraft, Ti	ansport, etc.
Rohstoffe (Sch	If, Torf, etc.) al fodder, peat as energy

Regulierende ÖSL

Selbstreinig		of water quality, detoxification, natural rient retention. Great importance of ommunities (biofilms, particle feeders)
Hochwasser	schutz	acities of riparian zones, wetlands, and ag of flash floods
Land-water- interactions		ater recharge from inland waters, transition ween terrestrial and aquatic ecosystems
Klimaregulat	ion	air temperature and humidity variations spiration

Erholung, Tourismus		areas are required near urban areas; high importance at the regional scale	
Ästhetisch/s	spiritueller	• Wert eritages, aesthetic landscape	
Educational values		in Ecology, schools, universities and rs (farmers, water managers)	

Unterstützende ÖSL Regulierende ÖSL Soil formation and fertilization by sedimentation in of water quality, detoxification, natural Selbstreinigung **Bodenbildung** rient retention. Great importance of riparian zones benthic communities (biofilms, particle feeders) nt storage in rivers and riparian zones, nutrient Nährstoffkreislauf acities of riparian zones, wetlands, and ng in rivers Hochwasserschutz ig of flash floods liate tat diversity and s Synergie-Effekte **Erhalt genetischer &** ("insurance") Groundwater recharge from inland waters, transition funktioneller Vielfalt zones between terrestrial and aquatic ecosystems iir temperature and humidity variations Produktions-ÖSL piration oducts (e.g. fish, crustaceans), wild game Nahrungsproduktion Domestic water Trinkwasser 464 km³ p.a. ses use Kulturelle ÖSL Industrie 768 km³ p.a. Wasserverbrauch areas are required near urban areas; Agricultural water **Erholung, Tourismus** Landwirtschaft 2.769 km³ p.a. high importance at the regional scale use eritages, aesthetic landscape and transportation/ **Asthetisch/spiritueller Wert** Wasserkarft, Transport, etc. Education in Ecology, schools, universities and Educational al fodder, peat as energy Rohstoffe (Schilf, Torf, etc.) values stakeholders (farmers, water managers...)

Soil formation and fertilization by sedimentation in **Bodenbildung** riparian zones nt storage in rivers and riparian zones, nutrient Nährstoffkreislauf ng in rivers tat diversity and species richness mediate Erhalt genetischer & ("insurance") funktioneller Vielfalt **Produktions-ÖSL** Trade-of oducts (e.g. fish, crusta Nahrungsproduktion Domestic water Drir Trinkwasse use Industrie 768 30 p.a. Wasserverbrauch Agricultural water Landwirtschaft 2.769 km³ p.a. n and transportation/ Wasserkraft, Transport, etc. al fodder, peat as energy Rohstoffe (Schilf, Torf, etc.)

Unterstützende ÖSL

Regulierende ÖSL

Selbstreinigung benthic	of water quality, detoxification, natural rient retention. Great importance of communities (biofilms, particle feeders)
Hochwasserschutz	acities of riparian zones, wetlands, and ig of flash floods
Land-water-	ter recharge from inland waters, transition een terrestrial and aquatic ecosystems
offs"	air temperature and humidity variations spiration

Erholung, To	ourismus		re required near urban areas; apportance at the regional scale
Ästhetisch/s	spiritueller	Wert	eritages, aesthetic landscape
Educational values			y, schools, universities and s, water managers)

Prioritäten in der Gewässerbewirtschaftung und Effekte auf das Ökosystem (Beispiel Rhein)

1980 "Schlechter Zustand" WRRL 1990 Unbefriedigend 1970 2000 Zukunft? 1960 Heute Vor 1900 "Guter Zustand" (hydrologisch, chemisch, biologisch...) Intensität anthropogener Belastung

Grad der Degradation

Ökosystemleistungen in der WRRL

 WRRL hat verschiedene, teilweise konfligierende Ziele: Ziele WRRL (Artikel 1)

Ziel dieser Richtlinie ist die Schaffung eines Ordnungsrahmens für den Schutz der Binnenoberflächengewässer, der Übergangsgewässer, der Küstengewässer und des Grundwassers zwecks

- a) Vermeidung einer weiteren Verschlechterung sowie Schutz und Verbesserung des Zustands der aquatischen Ökosysteme und der direkt von ihnen abhängenden Landökosysteme und Feuchtgebiete im Hinblick auf deren Wasserhaushalt,
- b) **Förderung einer nachhaltigen Wassernutzung** auf der Grundlage eines langfristigen Schutzes der vorhandenen Ressourcen,

c)

- ökologisches Konzept, Bewertungsmethoden der WRRL: menschliche Nutzungen teilweise als Belastungen, teilweise als schützenswert verstanden
- Begriff ÖSL erst im Nachhinein (MA 2005, TEEB 2010, EU-Biodiversitäts-Strategie 2011) in WRRL projiziert
- Hinarbeiten auf naturnahen Zustand, da Annahme, dass dann alle ÖSL gegeben seien (Dufour/Piégay 2009)

Sichtweisen WRRL und ÖSL-Ansatz

WRRL: Zustand, der u.a. durch stoffliche Belastung beeinträchtig wird ("Rezeptor-Perspektive")

⇒ Ökologischer Zustand auf der Basis von Lebensgemeinschaften

Gewässerflora

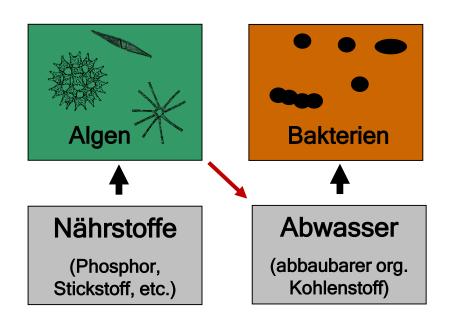
Benthische wirbellose Fauna

Fischfauna

ÖSL: Prozesse, welche u.a. die stoffliche Belastung verbessern können ("Reaktor-Perspektive")

- Selbstreinigung
 - Schadstoffabbau
 - Nährstoffrückhalt
 - Eutrophierungskontrolle
 -

Beispiel: Stoffhaushalt (C/N/P) von Flüssen


- Starker Nährstoffüberschüsse, "legacy" Grundwasser
- Zunahme der Folgen (Eutrophierung, Fischsterben, etc.)
 durch Klimawandel (s. Dürre 2018/19)

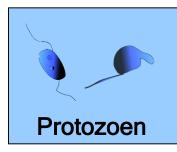
Eutrophierung, Folgen:

- Unstabile Wasserchemie
 - Fischsterben
 - tox. Blaualgenblüten

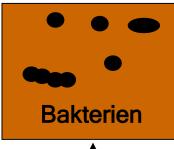
Folgen:

- Sauerstoffzehrung
 - Pathogene
 - Fischsterben
- Rücklösung Problemstoffe

Beispiel: Stoffhaushalt von Flüssen


Abbauleistung organischer Kohlenstoff

Biofilm


Dichten:

~ 100.000 Zellen pro cm²

Mountian stream

Abwasser

(abbaubarer org. Kohlenstoff)

Plankton

Dichten:

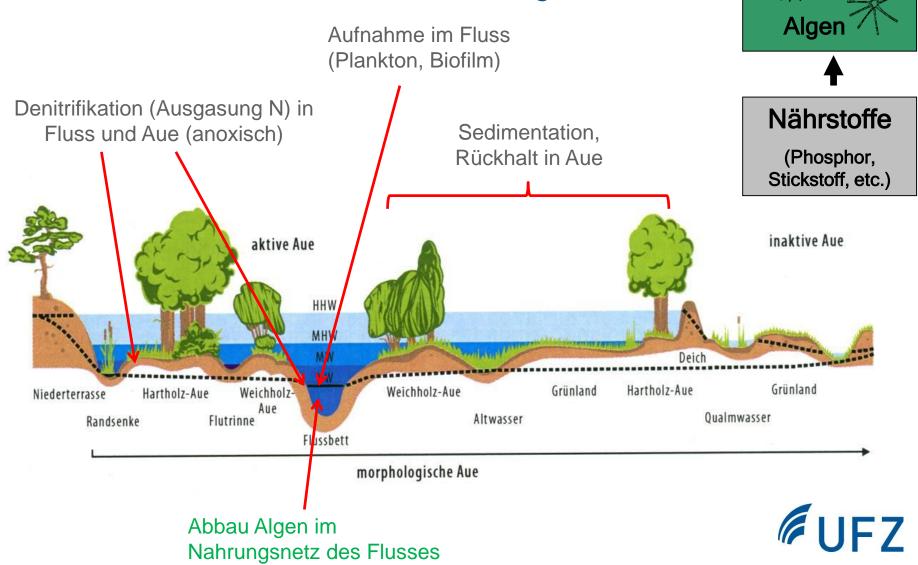
~ 1.000 Zellen pro ml

Leistung:

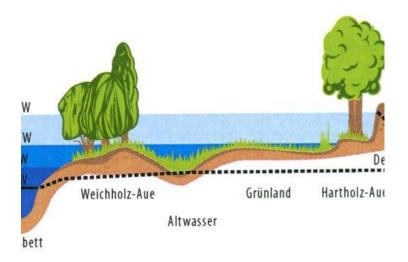
~ 700 Bakterien pro Tag (Flag.)

Dichten:

~ 1.000.000 Zellen pro ml


Verdopplungszeit:


~ 8 Stunden


Beispiel: Stoffhaushalt von Flüssen

Nährstoffrückhalt und -abbau, wichtige Prozesse

Stickstoffretention in 25 flächenmäßig größten Flussauen in D [t/a]

Starke Abhängigkeit von

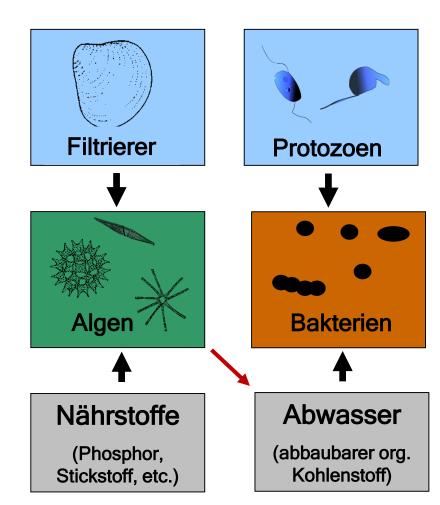
- Auenfläche
- Überflutungsdynamik

■N-Retention max [t/a] ■N-Retention min [t/a]

Schulz-Zunkel, C., Scholz, M., Kasperidus, H.D., Krüger, F., Natho. S. & M. Venohr (2012): Nährstoffrückhalt. In: Scholz, M. et al.: Ökosystemfunktionen von Flussauen. Naturschutz und Biologische Vielfalt 124: 48-72.

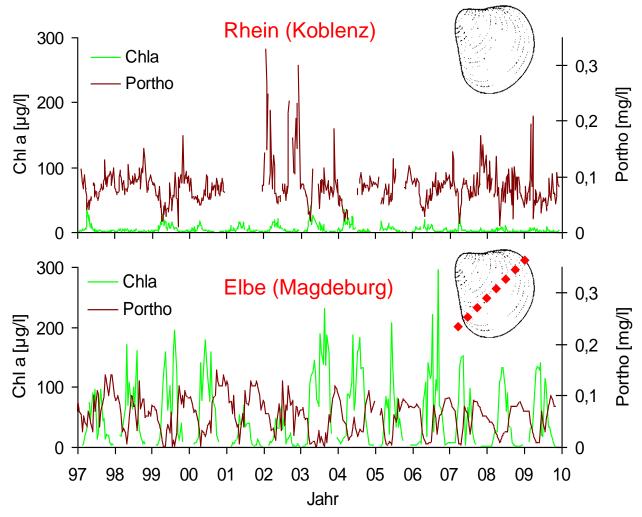
Beispiel: Stoffhaushalt von Flüssen

Eutrophierungskontrolle

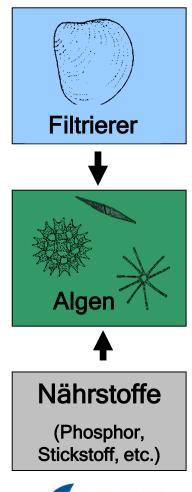

Dichten (Muscheln):

Bis > 1.000 Ind. pro m²

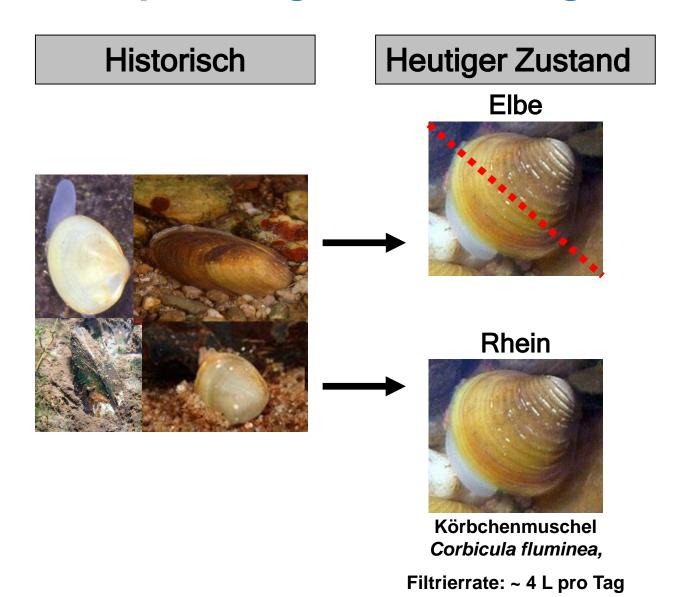
Filtrierleistung:

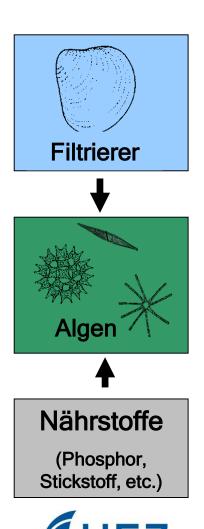

~ 4 L pro Tag

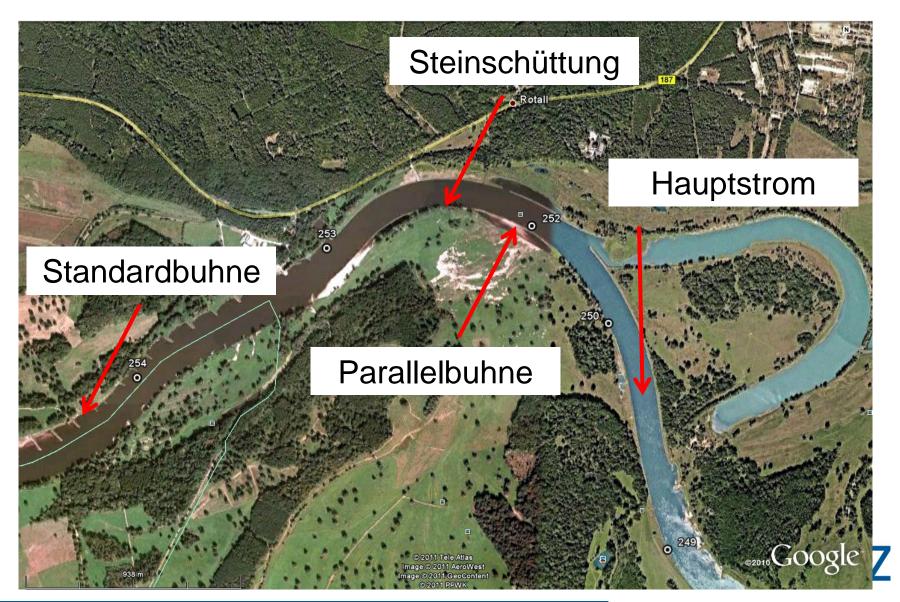
Beispiel entspricht einer filtrierten Wassersäule von 4 m pro Tag



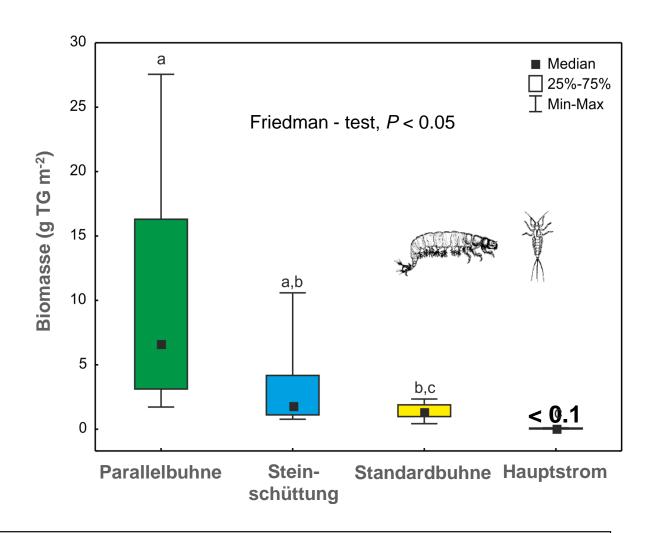
Eutrophierungskontrolle in großen Flüssen




Hardenbicker et al. (2014) Int Rev Hydrobiol

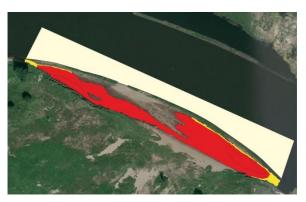


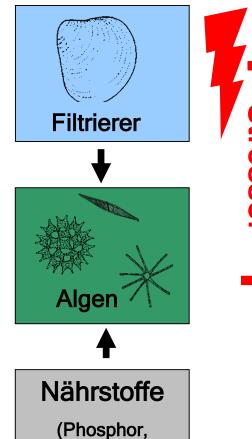
Eutrophierungskontrolle in großen Flüssen



Uferverbau und Habitate in der Elbe

Habitatspezifische Biomasse Makrozoobenthos





Brabender, Weitere, Anlanger & Brauns (2016) Hydrobiologia 776

Effekte der Uferstruktur auf die Sekundärproduktion in der Elbe

Stickstoff, etc.)

Brabender, Weitere, Anlanger, Brauns 2016 *Hydrobiologia* 776

Fazit

- Flüsse und Seen stellen eine Vielzahl von ÖSL bereit
- Wichtige Rolle der Ökosysteme in der Regulation des Stoffhaushaltes, welche durch bewusstes Management verbessert werden kann
- Synergien und Trade-offs zwischen ÖSL und Zielen der WRRL
- ÖSL zeigen den Nutzen der Ökosysteme für den Menschen und können die Kommunikation mit Stakeholder verbessern
- ÖSL-Ansatz kann bei der Planung von Maßnahmen helfen: Abwägung Kosten ⇔ Nutzen; Gewinnern ⇔ Verlierern; Synergien ⇔ Trade-offs